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We study a quasibound state of a �-kicked rotor with absorbing boundaries focusing on the nature of the
dynamical localization in open quantum systems. The localization lengths � of lossy quasibound states located
near the absorbing boundaries decrease as they approach the boundary while the corresponding decay rates �

are dramatically enhanced. We find the relation ���−1/2 and explain it based upon the finite time diffusion,
which can also be applied to a random unitary operator model. We conjecture that this idea is valid for the
system exhibiting both the diffusion in classical dynamics and the exponential localization in quantum
mechanics.
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Quantum localization �QL� is one of the fascinating phe-
nomena which cannot be expected in classical mechanics. It
has been observed in various physical situations: Anderson
localization �AL� in disordered systems �1�, dynamical local-
ization �DL� in chaotic systems �2�, weak localization in
dirty metals �3�, and so on. The QL mainly originates from
the interference among waves returning their initial condi-
tion. Even though classical statistical mechanics predicts that
a particle in a random potential exhibits stochastic motion
and thus gives rise to simple diffusion, the aforementioned
interference effect stops diffusion and localizes it within
some characteristic length scale referred to as the localization
length, �. Due to the interference nature of the QL, the co-
herence of the wave plays an indispensable role.

The DL is a dynamical version of the AL in the sense that
the distribution in momentum space stops diffusing and ex-
hibits typical exponential localization. The DL was theoreti-
cally found in the quantum �-kicked rotor �DKR� �2,4�, a
paradigm of quantum chaos �5�, and experimentally realized
by using ultracold atoms �6�. In the classical DKR the mean
square deviation of momentum indefinitely increases linearly
in time, while in quantum mechanics it follows classical evo-
lution only for a short time. At the characteristic time scale,
namely a break time, it then begins to saturate so that even-
tually the quantum diffusion is completely suppressed. The
formal equivalence between the DKR and the Anderson
model has been demonstrated �7�.

In principle every real quantum system is coupled to the
environment since no information can be extracted from
completely closed systems. Thus it is a natural question to
ask how the coupling of the quantum system to the environ-
ment modifies genuine quantum effects such as the QL. Re-
cently, the interest in open quantum systems has been rapidly
growing in the quantum chaos community �8–15�. In the
semiclassical limit the openness introduces two major modi-
fications onto the chaotic quantum systems: �i� the fractal
repellers manifest themselves in quasieigenstates �10� and
�ii� the density of states follows the so-called fractal Weyl’s
law �12�. The severe deviation from the random matrix
theory has also been reported in chaotic scattering when the

dwell time of an incident particle is extremely short �shorter
than the Ehrenfest time� �13,16�.

Even far from the semiclassical limit the openness of
complicated quantum systems has been an interesting issue,
for example, the characteristics of lasing modes in chaotic
microcavities �17–20� �see �21,22� for reviews� and localiza-
tion of light in random media �23–27�. Here we investigate
the open DKR in the quantum mechanical regime focusing
on the characteristics of localization of lossy modes located
near the open boundary. We found that quasieigenstates of
the open DKR are separated into two kinds: one is the local-
ized state whose localization length is almost equivalent to
that of the DKR without the absorbing boundaries and the
decay rate is determined from simple overlap argument dis-
cussed below. The other is a highly lossy mode located near
the boundary, which is more strongly localized and of which
decay rate is determined by considering the finite time clas-
sical diffusion. We also show that all these observations and
explanations are applicable to an open random unitary opera-
tor model.

The Hamiltonian of the DKR is given as

H =
p2

2
+ k sin x�

n

��t − nT� , �1�

where k is the kick strength, and T is the time interval be-
tween successive kicks. We fix k=14 and T=1, i.e., K=kT
=14 implying the classical dynamics is fully chaotic. Note
that the semiclassical limit implies k→� and T→0 with kT
kept constant, so that we do not consider the semiclassical
regime. The time evolution of the open quantum DKR with
absorbing boundaries �28� is described by ���T��
= P̂Û���0��, where Û is a unitary time evolution operator for

one period without absorption, and the operator P̂ projects
the wave function to the states satisfying �p�� pc, where pc
represents the absorbing boundary. We choose pc=1000 and
set �=1. This model has been extensively studied in the
context of the fidelity decay or the Loschmidt echo �29�.

The DL manifests itself via the exponentially localized

Floquet eigenstate of Û. In the open DKR the quasibound
state �QBS� can be analogously defined as*swkim0412@pusan.ac.kr
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P̂Û�	� = e−�ei
�	� . �2�

Due to the openness of the system the Floquet eigenvalues
no longer lie at a unit circle in a complex plane ���0�. Each
QBS can be identified by its average momentum, p̄
	
	�p̂�	�. In one period T the survival probability of the
given QBS is given as e−2� so that the lifetime of the state,
�L, is obtained by �L
�−1.

In Fig. 1 we present the decay constant � and the width of
the momentum distribution �p of QBSs labeled by p̄. Here
two visible features are clearly observed: �i� For p̄ much
smaller than pc, � increases exponentially and �p remains
constant with some fluctuation. �ii� As p̄ approaches pc, �
more rapidly increases and �p linearly decreases.

The first feature can be easily understood. For p̄� pc the
localized state has negligible influence from the absorbing
boundary so that the QBS is not so different from the origi-
nal Floquet state of the DKR without absorbing boundaries
as shown in Fig. 2�a�. This is also true even quantitatively
since it is fairly good to estimate �p based upon the well-
known relation �p���D /2�K2 /4 �30�, where D is the
classical diffusion constant. It implies that the QBS can be
described as 	�exp�−�p− p̄� /��. The decay constant � is
then determined by considering the overlap between the ex-
ponential tail of the localized QBS and the absorbing region
given as �p � � pc: 1−e−2���−1�pc

� exp�−2�p− p̄� /��dp. It
leads us to

� � exp�−
2

�
�p
 , �3�

where �p= pc− p̄. Figure 1�a� clearly shows this expectation
is correct.

As p̄ approaches pc, however, the absorbing boundary has
a dramatic influence on the QBSs. They become much more
lossy and even more strongly localized, which is unlikely
because the strongly localized mode has smaller overlap with
the absorbing region, i.e., becomes less lossy. It is worth
mentioning that here we exploit the absorbing boundaries to
open the system to the environment. Usually the coupling to
the environment introduces dissipation or decoherence,
which destroys the coherence itself, let alone the localiza-
tion. Therefore, one expects that the localization length in-
creases. In this sense the absorbing boundaries are special.
The absorbing boundary condition has been widely used and
relevant for many physical situations, e.g., optical microcav-
ites, ionization processes, random lasers, and so on.

In a usual DKR there is only one important time scale
�31�, namely the break time �B, at which the diffusion stops
so as to determine the localization of the Floquet state: �p

2

��2�D�B. In an open DKR, however, we should consider
one more time scale, the lifetime, �L. A clue comes from the
fact that the crossover from constant to decreasing �p�p̄�
takes place around �L��B.

The system undergoes its meaningful dynamics only for
t��L in the sense that the probability distribution no longer
changes except for overall decaying. If �L��B is satisfied,
therefore, the meaningful dynamics stops before the break
time is reached. It means that the classical diffusion plays a
dominant role in the decay process since a particle disap-
pears before the quantum suppression of classical diffusion
takes place. In other words, the particle escapes when it dif-
fusively arrives at the absorbing boundary. One can expect
that the lifetime �L of a given QBS with p̄ is determined
simply from the duration time for which the particle travels
from p̄ to pc by diffusion: �L��pc− p̄�2 /D. This can be re-
written as

� �
D

�p2 , �4�

which works quite well as shown in the inset of Fig. 1�a�. It
is emphasized that Eq. �4� is unexpected because we are not
dealing with the semiclassical regime. The classical diffusive
dynamics decides the decay constant even in the deep quan-
tum regime when the loss is large enough.

FIG. 1. �Color online� �a� The decay constants � of each QBS of
the open DKR as a function of the average momentum p̄ in log
scale. The straight line represents Eq. �3�. The inset shows � versus
�p	 pc− p̄ in log-log scale. The straight line represents Eq. �4�. �b�
The standard deviations �p as a function of p̄. The known theory for
the DKR without absorbing boundary predicts �p�50. The straight
line represents Eq. �5�.

FIG. 2. �Color online� �a� The momentum distributions of two
typical exponentially localized QBSs with p̄�502.86 and 765.47,
where �L��B is satisfied. �b� As p̄ approaches pc through 865.80,
961.04, and 982.88 �from the left to the right�, the distribution be-
comes narrower.
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Considering the above argument the linear decrease of �p
can also be understood. The meaningful dynamics stops at �L
���B� so that �p

2 is determined not from D�B but from D�L.
By using Eq. �4� we obtain

�p ��D

�
� �p , �5�

which is clearly seen in Fig. 1�b�.
In some sense very lossy modes near the absorbing

boundary are not interesting since they decay so fast. They
do not contribute to long time dynamics so that they form
only broad peaks even in the scattering cross section. Some-
times such a mode, nevertheless, becomes of great impor-
tance; for example, a very lossy mode can play a dominant
role in lasing operation, where an external energy input com-
pensates for the loss of the mode �18�. It is also worth men-
tioning that the spatial shape of an individual mode is re-
cently measured in the experiment of light in a random
medium, where the lossy mode strongly localized near the
boundary is also observed �25,26�.

The main theme of our work is that the lossy QBS of the
open DKR near the absorbing boundary shows rather stron-
ger localization. In principle this is applicable to any system
that exhibits diffusion in classical mechanics and exponential
localization in quantum mechanics. We consider one more
example originating from the one-dimensional Anderson
model. Instead of Anderson’s tight-binding Hamiltonian we

exploit the so-called random unitary operator �RUO� Û

= D̂Ŝ, where D̂mn=ei�m�mn with a random phase �m �32�, and

an infinite dimensional matrix Ŝ is defined as

Ŝ =�
� rt − t2

r2 − rt

rt r2 rt − t2

− t2 − tr r2 − rt

rt r2

− t2 − tr �

� . �6�

Here, Ŝ describes the scattering process via the relation 	i�

= Ŝij	 j, where 	 �	�� represents the incoming �outgoing�
flux for a scatterer. In the one-dimensional case two fluxes
with the opposite direction at each site between two neigh-
boring scatterers form two adjacent vector components, 	2k
and 	2k+1 �32�. The condition r2+ t2=1 holds to ensure uni-
tarity. For all calculation we fix t=0.4. In order to control the
width of the off-diagonal components, which roughly corre-

sponds to the parameter K of a DKR, we simply multiply Ŝ:

i.e., Ûn= D̂Ŝn �n=1,2 ,3 , . . . �. Note that the parameter K of a
classical DKR determines the maximum momentum transfer
to a particle from each kick. The nonzero �i , j�th off-diagonal

component of Û implies there exists a nonzero transition
probability between these two states: roughly speaking K

�max�i− j� satisfying 
i�Û�j��0. One then expects that the
larger n the bigger the corresponding effective K. We now

introduce the projection operator P̂ and the QBSs of P̂Ûn are
investigated in a similar way.

In Figs. 3�a� and 3�b�, we present the decay constant �
and the standard deviation �x, respectively, of an individual

QBS of P̂Ûn for various n. Once again two visible features
are observed. For x̄ �	
	�x̂�	�� much smaller than xc �x is
used here instead of p�, as x̄ increases, � exponentially in-
creases and �x remains constant. As x̄ closely approaches xc,
however, � more rapidly increases and � decreases linearly.
These observations are exactly analogous to those obtained
in the open DKR �see Fig. 1�. As n increases, the crossover
from constant to linearly decreasing �x is reduced since the
bigger n is the larger the effective K, consequently the longer
the break time. Figures 3�c� and 3�d� reconfirm the relations
�4� and �5�, respectively, i.e., �
�x−2 and �
�−1/2. It is
emphasized that these results are independent of n.

A final remark is in order. We have shown that the results
obtained in the DKR can be directly applied to those of the
RUO model. It is noted, however, that chaos is different from
random motion. The chaotic dynamics has more structures in
phase space, e.g., stable and unstable manifolds associated
with periodic orbits. The strong localization on the unstable
manifolds or the strange repellers in chaotic open systems
has been reported �10,22�. One might expect that rather

FIG. 3. �Color online� From bottom to top n=10,20,30 are
exploited for all figures. �a�,�b� The same as Figs. 1�a� and 1�b�,
respectively, except that a RUO model is considered. �c� � versus
�x in log-log scale. The straight line represents Eq. �4�. �d� �x

versus � in log-log scale. The straight line represents Eq. �5�.
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FIG. 4. �Color online� Husimi distribution functions of the QBS
for �a� p̄�502 and �b� p̄�972. The black curve represents the
classical unstable manifold.
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stronger localization observed here, i.e., the reduced localiza-
tion length, may be due to such underlying classical struc-
tures in phase space. In fact, it is shown in Fig. 4�b� that the
quantum distribution of the lossy QBS is localized along the
unstable manifolds �the effect is not so dramatic because the
situation is far from the semiclassical limit�, while most
other QBSs exhibit rather uniform distribution in phase
space �a typical example is shown in Fig. 4�a��. It is empha-
sized that we also observe the similar strong localization in
the RUO model, where neither dynamical chaos nor mani-
foldlike structure exists. It implies that the strong localization
of the lossy QBS observed in the DKR is ascribed not to the
manifold structures but to the finite time diffusion.

In summary, we have shown that the QBSs with their
lifetime smaller than the break time, i.e., �L��B, exhibit
rather stronger localization and considerable loss. In this
case, the main mechanism of the decay is determined from

classical diffusion, which gives the relation �4�. In addition,
before the break time is reached the classical diffusion effec-
tively stops so that the state with much narrower momentum
distribution is formed. The width of the distribution is then
described as Eq. �5�. Such a simple explanation can also be
successfully applied to a random unitary operator model. We
believe that our theory is valid for various physical situation
that the diffusion takes place in classical mechanics and
strong exponential localization exists in quantum mechanics.
We hope that our expectation is experimentally proven, e.g.,
by direct observation of geometrical shapes of quasibound
states in light in random media.
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